首页> 外文OA文献 >Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition
【2h】

Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition

机译:通过总变差正则化低秩的高光谱图像恢复   张量分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hyperspectral images (HSIs) are often corrupted by a mixture of several typesof noise during the acquisition process, e.g., Gaussian noise, impulse noise,dead lines, stripes, and many others. Such complex noise could degrade thequality of the acquired HSIs, limiting the precision of the subsequentprocessing. In this paper, we present a novel tensor-based HSI restorationapproach by fully identifying the intrinsic structures of the clean HSI partand the mixed noise part respectively. Specifically, for the clean HSI part, weuse tensor Tucker decomposition to describe the global correlation among allbands, and an anisotropic spatial-spectral total variation (SSTV)regularization to characterize the piecewise smooth structure in both spatialand spectral domains. For the mixed noise part, we adopt the $\ell_1$ normregularization to detect the sparse noise, including stripes, impulse noise,and dead pixels. Despite that TV regulariztion has the ability of removingGaussian noise, the Frobenius norm term is further used to model heavy Gaussiannoise for some real-world scenarios. Then, we develop an efficient algorithmfor solving the resulting optimization problem by using the augmented Lagrangemultiplier (ALM) method. Finally, extensive experiments on simulated andreal-world noise HSIs are carried out to demonstrate the superiority of theproposed method over the existing state-of-the-art ones.
机译:高光谱图像(HSI)在采集过程中通常会被多种类型的噪声混合破坏,例如高斯噪声,脉冲噪声,死线,条纹等。这种复杂的噪声可能会降低所获取的HSI的质量,从而限制了后续处理的精度。在本文中,我们通过充分识别干净的HSI部分和混合噪声部分的固有结构,提出了一种基于张量的HSI恢复方法。具体来说,对于干净的HSI部分,我们使用张量Tucker分解来描述所有频带之间的全局相关性,并使用各向异性的空间光谱总变化(SSTV)正则化来表征空间和光谱域中的分段平滑结构。对于混合噪声部分,我们采用$ \ ell_1 $规范化来检测稀疏噪声,包括条纹,脉冲噪声和坏点。尽管电视规则化具有消除高斯噪声的能力,但Frobenius范数项仍被用于在某些实际场景中对重的高斯噪声建模。然后,我们通过使用增强型拉格朗日乘数(ALM)方法开发了一种用于解决最终优化问题的有效算法。最后,在模拟和真实世界的噪声HSI上进行了广泛的实验,以证明所提出的方法优于现有的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号